Druggability analysis and classification of protein tyrosine phosphatase active sites
نویسندگان
چکیده
Protein tyrosine phosphatases (PTP) play important roles in the pathogenesis of many diseases. The fact that no PTP inhibitors have reached the market so far has raised many questions about their druggability. In this study, the active sites of 17 PTPs were characterized and assessed for its ability to bind drug-like molecules. Consequently, PTPs were classified according to their druggability scores into four main categories. Only four members showed intermediate to very druggable pocket; interestingly, the rest of them exhibited poor druggability. Particularly focusing on PTP1B, we also demonstrated the influence of several factors on the druggability of PTP active site. For instance, the open conformation showed better druggability than the closed conformation, while the tight-bound water molecules appeared to have minimal effect on the PTP1B druggability. Finally, the allosteric site of PTP1B was found to exhibit superior druggability compared to the catalytic pocket. This analysis can prove useful in the discovery of new PTP inhibitors by assisting researchers in predicting hit rates from high throughput or virtual screening and saving unnecessary cost, time, and efforts via prioritizing PTP targets according to their predicted druggability.
منابع مشابه
Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules
Druggability assessment of a target protein has emerged in recent years as an important concept in hit-to-lead optimization. A reliable and physically relevant measure of druggability would allow informed decisions on the risk of investing in a particular target. Here, we define "druggability" as a quantitative estimate of binding sites and affinities for a potential drug acting on a specific p...
متن کاملTargeting a Cryptic Allosteric Site for Selective Inhibition of the Oncogenic Protein Tyrosine Phosphatase Shp2
Protein tyrosine phosphatases (PTPs) have been the subject of considerable pharmaceutical-design efforts because of the ubiquitous connections between misregulation of PTP activity and human disease. PTP-inhibitor discovery has been hampered, however, by the difficulty in identifying cell-permeable compounds that can selectively target PTP active sites, and no PTP inhibitors have progressed to ...
متن کاملDruggability Analysis and Structural Classification of Bromodomain Acetyl-lysine Binding Sites
Bromodomains are readers of the epigenetic code that specifically bind acetyl-lysine containing recognition sites on proteins. Recently the BET family of bromodomains has been demonstrated to be druggable through the discovery of potent inhibitors, sparking an interest in protein-protein interaction inhibitors that directly target gene transcription. Here, we assess the druggability of diverse ...
متن کاملAutomatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites
Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...
متن کاملReceptor Tyrosine Kinase Inhibitory Activities and Molecular Docking Studies of Some Pyrrolo[2,3-d]pyrimidine Derivatives
In this study, we aimed to determine VEGFR-2, EGFR and PDGFR-β tyrosine kinase inhibitory activities of some pyrrolo[2,3-d]pyrimidine derivatives previously synthesized and showed potent cytotoxic and apoptotic effects against several cancer cell lines by our group and to evaluate the relationships between inhibitory activities and binding properties of the active compounds by molecular docking...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016